Elimination from the circulation of cats of 6-keto-prostaglandin E_1 compared with prostaglandins E_2 and I_2

ULRICH FÖRSTERMANN^{*} AND BRIGITTE NEUFANG

Department of Pharmacology, University of Freiburg, Hermann-Herder-Str. 5, D-7800 Freiburg, Federal Republic of Germany

6-keto-PGE₁, when injected intravenously (i.v.) or into the aortic arch of cats, produced similar dose-dependent decreases in mean arterial blood pressure. The hypotensive effect of PGI₂ was slightly less pronounced compared with that of 6-keto-PGE₁, but was equally potent after i.v. and intra-arterial administration. PGE₂ had a more potent depressor effect than the two other compounds when injected into the aortic arch, but was much less effective after i.v. injection. Plasma concentrations of 6-keto-PGE₁, 6-keto-PGE₁, PGI₂ and PGE₂. The half-life (t¹/₂) of the initial rapid decrease in immunoreactivity, indicating the rate of elimination, was found to be 1·04–2·19 min for 6-keto-PGE₁, 1·16–2·01 min for PGI₂ and 0·29–1·08 min for PGE₂. We have confirmed in the cat that 6-keto-PGE₁, like PGI₂ but unlike PGE₂, is not substantially inactivated by the lungs and thus could act as a circulating hormone. However, despite its higher chemical stability, the t¹/₂ of 6-keto-PGE₁ in the circulation is similar to that of PGI₂. PGE₂ has a shorter t¹/₂, probably due to its extensive pulmonary inactivation. Thus 6-keto-PGE₁ seems to be removed from circulation as quickly as PGI₂ by organs other than the lung and is unlikely to mediate prolonged effects of PGI₂ in the systemic circulation.

Prostacyclin (PGI₂), the main product of prostaglandin endoperoxide metabolism in blood vessels is a potent vasodilator and inhibits platelet aggregation (Moncada & Vane 1977). PGI₂ is chemically unstable (t¹/₂ at 37 °C and pH 7.6 approx. 3 min) and spontaneously breaks down to 6-keto-PGF_{1 α}. A new metabolic pathway has recently been described for prostacyclin and 6-keto-PGF_{1 α} (Wong et al 1980a, b; Spokas et al 1981) leading to the formation of 6-keto-PGE₁ catalysed by a NAD⁺ linked 9-hydroxyprostaglandin dehydrogenase (Wong et al 1980b). This enzyme has been observed in-vitro in rabbit liver (Wong et al 1980b), in human platelets (Wong et al 1980a) and in rabbit renal cortex (Spokas et al 1981; Gans & Wong 1981). The 6-keto-PGE₁-pathway is of special interest in that its product was shown to be equally potent (Wong et al 1979) or slightly less potent (Miller et al 1980) than PGI_2 as an inhibitor of platelet aggregation. Furthermore 6-keto-PGF₁ was found to possess potent vasodilating properties (Quilley

* Correspondence.

et al 1979; Lippton et al 1980; Hyman & Kadowitz 1980; Jackson et al 1981). These findings have led to the hypothesis that 6-keto=PGE₁, formed by some tissues from either PGI₂ or 6-keto-PGF_{1 α}, could act synergistically with PGI₂ and might mediate some prolonged effects of PGI₂ (Quilley et al 1979; Wong et al 1980b). One presupposition for this would be, that 6-keto-PGE₁, like PGI₂, is not substantially inactivated in the lungs and thus could act as a circulating hormone. This has been claimed by Quilley et al (1979) in the rat and Hyman & Kadowitz (1980) in the cat. However, Tsunoda et al (1982) demonstrated in dogs that 6-keto-PGE₁ underwent more efficient pulmonary extraction than PGI_2 . We have therefore compared the rates of elimination of 6-keto-PGE₁, PGI₂ and PGE₂ in cats.

MATERIALS AND METHODS

Cats of either sex $(2\cdot7-4\cdot3 \text{ kg})$ were anaesthetized with sodium pentobarbitone $(30-40 \text{ mg kg}^{-1}, \text{ i.v.})$, intubated and respired artificially to give an endtidal CO₂-concentration of $3\cdot5-4\cdot0$ vol%. Rectal temperature was maintained between 37 °C and 38 °C using a heating pad. Polyethylene cannulae (PE 60) containing heparinized 0.9% (w/v) saline were inserted into different vessels, for measurement of blood pressure using a pressure transducer (Statham, P23Db) connected to a pen recorder (Watanabe WTR 281), for the administration of prostanoids, and for collecting blood samples. Unless used otherwise, all catheters were continuously infused with saline (2.5 ml h⁻¹) to prevent clotting. After completion of surgery the animals were heparinized (500 i.u. kg⁻¹, i.v.). A time interval of 90 min passed before the beginning of each experiment.

Blood pressure

The hypotensive response to pre- and postpulmonary infusions of PGI₂, PGE₂, and 6-keto- PGE_1 were used to assess the extraction of the compounds by the lungs. A venous catheter was advanced from the right femoral vein into the right atrium, and an arterial catheter pushed down from the left carotid artery into the aortic arch. Systemic blood pressure was measured from the left femoral artery. Randomized doses of the three prostaglandins (10 ng kg⁻¹ -10μ g kg⁻¹) were administered in a constant volume of 0.1 ml kg^{-1} and washed in with 0.5 ml of 0.9% NaCl. The sequence of intraaortic and i.v. administration was changed in each experiment. After each injection blood pressure was allowed to return to normal and an interval 6 min allowed before the next dose was administered.

Radioimmunoassay

Systemic arterial pressure was measured from the left carotid artery. PGI_2 , PGE_2 , and 6-keto- PGE_1 (5 μ g kg⁻¹) were injected into the right femoral vein. The interval between two drug administrations was 90 min. Blood samples (0.6 ml) were collected from the left femoral artery before and after the injections according to a time schedule. Blood was mixed in chilled tubes with 10%, v/v, of a solution containing Na₂EDTA (77 mM, pH 7.4) and indomethacin (0.1 mm, final concentration in blood) and immediately centrifuged to obtain the plasma which was stored at -20 °C until analysis. PGE₂ and 6-keto- $PGF_{1\alpha}$, the stable hydrolysis product of PGI_2 , were determined directly by radioimmunoassays, described by Jobke et al (1973), Peskar & Hertting (1973) and Machleidt et al (1981). A goat antirabbit-y-globulin (Calbiochem, San Diego, CA) was used to separate free and antibody-bound prostaglandins. The least detectable amounts were 170 pg ml⁻¹ for PGE₂ and 52 pg ml⁻¹ for 6-keto- $PGF_{1\alpha}$. Plasma concentrations of 6-keto-PGE₁ were determined using its relative cross-reactions with the antibody against PGE₂ (19% crossreaction) and against 6-keto-PGF_{1 α} (6% crossreaction). The detection limits for cross-reacting 6-keto-PGE₁ were 860 pg ml⁻¹ when the PGE₂radioimmunoassay was used and 882 pg ml-1 with the 6-keto-PGF_{1 α}-radioimmunoassay. Plasma samples obtained after injection of 6-keto-PGE₁ were submitted to both assays, which produced comparable results. This mode of determination of 6-keto- PGE_1 was applicable despite the relatively low sensitivity attained, since after injection of 6-keto-PGE₁ plasma levels of 6-keto-PGE₁-like material stayed at measurable levels for at least 10 min, a period long enough to calculate the initial rapid component of elimination.

The immunoreactivities were characterized by thin layer chromatography. Two plasma samples (0.3 ml) obtained 1 min and 2 min after the injection of 6-keto-PGE₁ (5 μ g kg⁻¹) were pooled. 1.4 ml of phosphate buffered saline was added and the sample acidified to pH 3.0 with 1 M HCl. The prostaglandins were extracted from the mixture using an XAD-2 resin column (Förstermann et al 1982). The extract was then submitted to thin layer chromatography (plates: Merck Kieselgel 60, solvent system: ethyl acetate-distilled water-isooctaneglacial acetic acid, 110:100:50:20, v/v, upper phase, two developments). The chromatogram was cut into 15 zones from origin to solvent front and the immunoreactivities in each zone were analysed in the radioimmunoassays for 6-keto-PGF_{1 α} and for PGE_2 as described elsewhere (Machleidt et al 1981; Förstermann et al 1982).

Materials used

PGI₂ (Upjohn Co., Kalamazoo, MI) was dissolved (1 mg ml⁻¹) in 10 mM Tris buffer, pH 10·0. Stock solutions (1 mg ml⁻¹) of 6-keto-PGE₁ (Upjohn Co., Kalamazoo, MI) and PGE₂ (Sigma, Munich, FRG) were prepared in 2 mM Na₂CO₃. The stock solution of 6-keto-PGF₁ α (1 mg ml⁻¹) was made in 300 µl of acetone and 700 µl of 2 mM Na₂CO₃. The solutions were kept at -20 °C. All prostaglandins were diluted identically with Tris-buffered saline, pH 8·5, immediately before use.

5,6,8,11,12,14,15- ^{3}H -PGE₂ (spec. act. 200 Ci mmol⁻¹, New England Nuclear, Dreieich, FRG) was the tracer in the PGE₂-radioimmunoassay. 5,8,9,11,12,14,15- ^{3}H - 6 -keto-PGF_{1 α} (spec. act.

100 Ci mmol⁻¹, New England Nuclear, Dreieich, FRG) was the labelled ligand in the 6-keto-PGF_{1 α}-assay.

RESULTS

Blood pressure

No vehicle effects on arterial blood pressure were noted. PGI_2 , 6-keto- PGE_1 , and PGE_2 produced a dose-dependent fall in mean arterial blood pressure when injected into the aortic arch. Intravenous administration of the three compounds also produced dose-dependent relationships between log-dose and response. Responses to PGI_2 and to 6-keto- PGE_1 were not significantly different after either route of administration (Figs 1, 2). In contrast, PGE_2 proved to be about 30 times less potent when injected i.v. (Fig. 1). Intra-aortic PGE_2 was

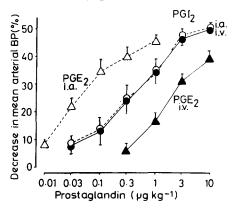


FIG. 1. Decrease in mean arterial blood pressure produced by PGI₂ administered i.v. into the right atrium (-, n = 4) or i.a. into the aortic arch (\bigcirc - - \bigcirc , n = 4), and decrease in mean arterial pressure induced by PGE₂ injected i.v. into the right atrium (\blacktriangle , n = 5) or i.a. into the aortic arch (\bigcirc - - - \bigcirc , n = 5). Each point is the mean \pm s.e.m. of the number of experiments indicated.

the most potent vasodepressor prostaglandin, causing a significant fall in blood pressure at 10 ng kg⁻¹ (Fig. 1). 6-keto-PGE₁ proved to be slightly more potent in lowering systemic blood pressure than PGI₂ (compare Figs 1, 2). Both compounds significantly lowered blood pressure at 30 ng kg⁻¹. 6-keto-PGF_{1α} was without effect on blood pressure up to a dose of 10 µg kg⁻¹ given i.v. or into the aortic arch (Fig. 2).

From the dose-response curves obtained with each cat the doses which produced a 20% decrease in blood pressure were derived. These data were then used to quantify the per cent pulmonary extraction of each compound in each animal, calculated as (i.v.-dose–i.a.-dose) \times 100/i.v.-dose (Gerkens et al 1978).

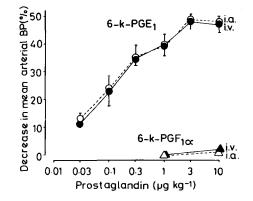


FIG. 2. Effect on mean arterial blood pressure produced by 6-keto-PGE₁ injected i.v. into the right atrium (\bigcirc , n = 5) or i.a. into the aortic arch (\bigcirc -- \bigcirc , n = 5) and effect of two doses of 6-keto-PGF₁_{\alpha} administered by both routes (both n = 3). Each point represents the mean ± s.e.m. of the number of experiments indicated.

As shown in Table 1 PGE_2 was extracted to more than 95%, whereas neither PGI_2 nor 6-keto- PGE_1 were significantly inactivated by the lungs.

Table 1. Percentage extraction (mean \pm s.e.m.) of 6-keto-PGE₁, PGI₂ and PGE₂ by the pulmonary circulation.

Compound	% Extraction	Number of experiments
$\begin{array}{c} 6\text{-keto-PGE}_1\\ PGI_2\\ PGE_2 \end{array}$	5.71 ± 6.12 0.81 ± 7.95 95.72 ± 0.33	5 4 5

Radioimmunological measurements

The injection of PGI_2 (5 µg kg⁻¹ i.v.) caused a rapid rise in plasma concentrations of 6-keto- $PGF_{1\alpha}$ -immunoreactivity, which then decreased, as shown in Fig. 3. The $t^{1/2}$ of the initial rapid decline (calculated between 1 min and 4 min), reflecting the rate of elimination, was found to be 1.16-2.01 min (mean 1.46 min). When 6-keto-PGE_1 was injected a similar graph was derived for the 6-keto-PGE₁-like material (Fig. 3). The $t^{1/2}$ of the rapid decline was found to be 1.04-2.19 min (mean 1.41 min), which was not substantially different from data obtained for 6-keto-PGF₁ immunoreactivity after PGI₂ administration. Peak concentrations measured after 1 min were also similar. As the 6-keto-PGE₁-like material was determined using its cross-reactions in the radioimmunoassays for 6-keto-PGF_{1 α} and PGE₂, the immunoreactive material was further characterized by thin layer chromatography. As shown in Fig. 4 the predominant immunoreactive material found by both assays after injection of 6-keto-PGE₁ into

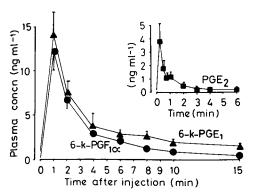


FIG. 3. Plasma concentrations of 6-keto-PGF₁ α -immunoreactive material (---, n = 10) after i.v.-injection of 5 µg kg⁻¹ PGI₂, plasma concentrations of 6-keto-PGE₁like material (---, n = 8) after i.v.-injection of 5 µg kg⁻¹ 6-keto-PGE₁ as determined by its crossreaction in the 6-keto-PGF₁ α -radioimmunoassay, and plasma concentrations of PGE₂-immunoreactive material (---, n = 5) after i.v.-injection of 5 µg kg⁻¹ PGE₂ (insert). Each point represents the mean ± s.e.m. of the number of experiments given above.

the cat, co-chromatographed with authentic 6-keto-PGE₁.

After injection of PGE_2 (5 µg kg⁻¹ i.v.) the maximal plasma concentrations of PGE_2 immunoreactivity attainable (measured after 0.25 min) were much lower than those of 6-keto- $PGF_{1\alpha}$ - or 6-keto- PGE_1 -like material after their i.v. injection (5 µg kg⁻¹). Additionally, plasma concen-

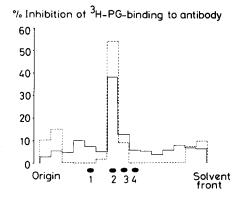


FIG. 4. Thin layer chromatogram on a silica gel plate (developed twice in ethyl acetate-distilled water-isooctane-glacial acetic acid, 110:100:50:20, v/v, organic phase) of a plasma pool obtained 1 and 2 min after the i.v.-injection of 5 µg kg⁻¹ 6-keto-PGE₁ into a cat. The chromatogram was cut into 15 zones from origin to solvent front. The eluates of the different zones were submitted to a 6-keto-PGE₁a-radioimmunoassay (continuous line) and to a PGE₂-assay (broken line). The predominant immunoreactive peaks in both assays co-chromatographed with authentic 6-keto-PGE₁, spot 3: 6,15-diketo-PGF₁a, spot 4: 6,15-diketo-13,14-dihydro-PGF₁a.

trations of PGE₂-immunoreactivity after injection of PGE₂ declined much more rapidly (Fig. 3). The $t^{1/2}$ of the initial rapid component (calculated between 0.25 and 1.00 min after the injection) was found to be 0.29–1.08 min (mean 0.47 min).

Thus as far as pulmonary extraction and $t\frac{1}{2}$ in the circulation are concerned, 6-keto-PGE₁ has properties which are closely similar to PGI₂ but different from PGE₂.

DISCUSSION

This study shows that the PGI_2 -metabolite 6-keto-PGE₁, in addition to its anti-platelet-aggregatory activity (Wong et al 1979; Miller et al 1980), has in the cat systemic vasodilating capacities, which are slightly greater than those of PGI_2 (see Figs 1, 2).

Our data confirm the observation of Hyman & Kadowitz (1980) that 6-keto-PGE₁ like PGI₂, is not significantly extracted during passage across the cat lungs. Similar results have been reported in the rat (Quilley et al 1979), lamb (Lock et al 1979) and dog (Van Dam et al 1981). All of these results are at variance with the apparent inactivation of 6-keto- PGE_1 in the dog pulmonary circulation reported by Tsunoda et al (1982). However we found an extensive extraction of PGE_2 in the lungs, which is in accordance with earlier well established findings (Ferreira & Vane 1967; Piper et al 1970). As the lung is the most important organ of clearance, the strong extraction of PGE₂ by this organ can explain its smaller maximal plasma concentrations reached, and its shorter $t\frac{1}{2}$ in the circulation.

Since 6-keto-PGE₁ escapes substantial pulmonary metabolism in the cat, it has a similar potential as PGI₂ to act as a circulating hormone. However, the in-vivo actions of prostaglandins at sites distant from their site of synthesis are limited by two factors: their chemical stability and their rate of systemic enzymatic inactivation. Of these two, the latter seems to be the more important, for under physiological conditions PGE_2 and $PGF_{2\alpha}$ show a remarkable chemical stability (Karim et al 1968), whereas PGI₂ has only a chemical $t^{1/2}$ of about 3 min (Dusting et al 1978). In-vivo, however, the 'classical' prostaglandins are extracted from the circulation by the lungs within seconds (Granström & Samuelsson 1978; present results). Even PGI₂, which is not substantially inactivated by the lungs and thus may be expected to have a longer $t^{1/2}$, disappears from the circulation with a t¹/₂ of much less than 3 min (Salmon et al 1979; Machleidt et al 1981; present results). Although 6-keto-PGE₁ is not inactivated in the cat lung it is obviously

rapidly metabolized by other tissues e.g. liver and kidney. Thus its longer chemical $t\frac{1}{2}$ seems to be of minor importance in the systemic circulation and it is thus unlikely that 6-keto-PGE₁ is responsible for the unexpectedly long duration of effect of PGI₂ (Higgs et al 1977; Armstrong et al 1978).

As we could not determine basal levels of endogenous 6-keto-PGE1 with our radioimmunological technique, the data presented give no information about the conversion of endogenous PGI2 to 6-keto-PGE₁ in the cat. It has recently been reported that endogenous plasma levels of 6-keto-PGE₁ are very low in humans ($<30 \text{ pg ml}^{-1}$) and that exogenous PGI₂ is not converted to an appreciable extent to this metabolite in man (Jackson et al 1982). However, this does not completely exclude 6-keto-PGE₁ from perhaps being responsible for some biological actions of endogenous PGI₂ due to localized biotransformation. Additionally, prolonged in-vitro effects of PGI₂ such as stimulation of renin release (Whorton et al 1977) and inhibition of platelet aggregation (MacIntyre et al 1979) might be explained by the formation of 6-keto-PGE₁.

REFERENCES

- Armstrong, J. M., Lattimer, N., Moncada, S., Vane, J. R. (1978) Br. J. Pharmacol. 62: 125-130
- Dusting, G. J., Moncada, S., Vane, J. R. (1978) Ibid. 64: 315-320
- Ferreira, S. H., Vane, J. R. (1967) Nature (London) 216: 868-873
- Förstermann, U., Neufang, B., Hertting, G. (1982) Biochim. Biophys. Acta 712: 684–691
- Gans, K. R., Wong, P. Y-K. (1981) Fed. Proc. Fed. Am. Soc. Exp. Biol. 40: 681
- Gerkens, J. R., Friesinger, G. C., Branch, R. A., Shand, D. G., Gerber, J. G. (1978) Life Sci. 22: 1837–1842
- Granström, E., Samuelsson, B. (1978) in: Frölich, J. C. (ed.) Advances in Prostaglandin and Thromboxane Research, vol. 5, Raven Press, New York, pp 1–13
- Higgs, G. A., Moncada, S., Vane, J. R. (1977) Br. J. Pharmacol. 61: 137P

- Hyman, A. L., Kadowitz, P. J. (1980) J. Pharmacol. Exp. Ther. 213: 468-472
- Jackson, E. K., Herzer, W. A., Zimmerman, J. B., Branch, R. A., Oates, J. A., Gerkens, J. F. (1981) Ibid. 216: 24–27
- Jackson, E. K., Goodman, R. P., Fitzgerald, G. A., Oates, J. A., Branch, R. A. (1982) Ibid 221: 183–187
- Jobke, A., Peskar, B. A., Peskar, B. M. (1973) FEBS Lett. 37: 192–196
- Karim, S. M. M., Devlin, J., Hillier, K. (1968) Eur. J. Pharmacol. 4: 416–420
- Lippton, H. L., Chapnick, B. M., Hyman, A. L., Kadowitz, P. J. (1980) Prostaglandins 19: 299–310
- Lock, J. E., Olley, P. M., Coceani, F., Hamilton, F., Doubilet, G. (1979) Ibid. 18: 303–309
- MacIntyre, D. O., Steer, M., Galgoci, B., Khorana, J., Levine, L., Salzman, E. (1979) Abstracts of the Fourth International Prostaglandin Conference, p 73
- Machleidt, C., Förstermann, U., Anhut, H., Hertting, G. (1981) Eur. J. Pharmacol. 74: 19–26
- Miller, O. V., Aiken, J. W., Shebuski, R. J., Gorman, R. R. (1980) Prostaglandins 20: 391-399
- Moncada, S., Vane, J. R. (1977) in: Kharash, N., Fried, J. (eds) Biochemical Aspects of Prostaglandins and Thomboxanes, Academic Press, New York, pp 155–177
- Peskar, B. Hertting, G. (1973) Naunyn-Schmiedeberg's Arch. Pharmacol. 279: 227-234
- Piper, P. J., Vane, J. R., Wyllie, J. H. (1970) Nature (London) 225: 600-604
- Quilley, C. P., Wong, P. Y-K., McGiff, J. C. (1979) Eur. J. Pharmacol. 57: 273–276
- Salmon, J. A., Mullane, K. M., Dusting, G. J., Moncada, S., Vane, J. R. (1979) J. Pharm. Pharmacol. 31: 529–532
- Spokas, E. G., Wong, P. Y-K., McGiff, J. C. (1981) Fed. Proc. Am. Soc. Exp. Biol. 40: 548
- Tsunoda, S., Jackson, E. K., Branch, R. A., Gerkens, J. F. (1982) Eur. J. Pharmacol. 77: 147–151
- Van Dam, J., Fitzpatrick, T. M., Friedman, L. S., Ramwell, P. W., Rose, J. C., Kot, P. A. (1981) Proc. Soc. Exp. Biol. Med. 166: 76–79
- Whorton, A. R., Misono, K., Hollifield, J., Frölich, J. C., Inagami, T., Oates, J. A. (1977) Prostaglandins 14: 1095-1104
- Wong, P. Y-K., McGiff, J. C., Sun, F. F., Lee, W. H. (1979) Eur. J. Pharmacol. 60: 245–248
- Wong, P. Y-K., Lee, W. H., Chao, P. H-W., Reiss, R. F., McGiff, J. C. (1980a) J. Biol. Chem. 255: 9021–9024
- Wong, P. Y-K., Malik, K. U., Desiderio, D. M., McGiff, J. C., Sun, F. F. (1980b) Biochem. Biophys. Res. Commun. 93: 486–494